0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study of VACNT Arrays as Thermal Interface Material

[+] Author Affiliations
Yulong Ji, Gen Li, Yuqing Sun

Dalian Maritime University, Dalian, Liaoning, China

Hongbin Ma

University of Missouri, Columbia, MO

Paper No. MNHMT2013-22016, pp. V001T12A001; 5 pages
doi:10.1115/MNHMT2013-22016
From:
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • Hong Kong, China, December 11–14, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-3615-4
  • Copyright © 2013 by ASME

abstract

In order to improve thermal interface material (TIM), vertically aligned carbon nanotube (VACNT) arrays were synthesized by the chemical vapor deposition method, and then transferred by dipping in hydrofluoric acid (HF acid) solution to get a free standing VACNT array. Different TIM samples with sandwiched structures were fabricated by inserting the free standing VACNT arrays between two copper plates with and without bonding materials. The laser flash analysis method was applied to measure the overall thermal conductivity of these samples. Results show that: compared with two copper plates in direct contact, thermal conductivity of samples only with VACNT arrays as TIM can be enhanced about 142%–460% depending on the thickness of VACNT arrays. Conventional TIM made up of thermal paste (TG-550 with thermal conductivity of 5 W/mK) and a thermal pad (TP-260 US with thermal conductivity of 6 W/mK) was used as a bonding material between copper plates and VACNT arrays, thermal conductivity has been shown to further improve with the highest values at 8.904 W/mK and 10.17 W/mK corresponding to the different bonding materials and different thicknesses of VACNT arrays used. Results also show that the thicker the VACNT array is when used as a TIM, the lower the overall thermal conductivity of the corresponding samples. This lower thermal conductivity caused by more defects in amorphous carbon of thicker VACNT arrays and lower density of the corresponding sandwiched samples.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In