0

Full Content is available to subscribers

Subscribe/Learn More  >

A Dissipative Particle Dynamics Study of Liquid Crystals Under Electric Field

[+] Author Affiliations
Man Prakash Gupta, Satish Kumar

Georgia Institute of Technology, Atlanta, GA

Paper No. MNHMT2013-22125, pp. V001T10A005; 6 pages
doi:10.1115/MNHMT2013-22125
From:
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • Hong Kong, China, December 11–14, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-3615-4
  • Copyright © 2013 by ASME

abstract

We study the equilibrium and dynamic behavior of liquid crystals (LCs) under dc and ac electric field using a mesoscopic simulation technique, Dissipative Particle Dynamics (DPD). We quantify the reorientation of LC molecules and the change in their anisotropic character under external perturbation by an order parameter. We find that the electric field magnitude has to be above a critical value to initiate the reorientation of the director of the LC system along the applied electric field, which is consistent with the experimental observations. The response time of the reorientation process decreases as the magnitude of the electric increases for the dc fields. The effect of ac field frequency on the order parameter is correlated with the field amplitude. The cyclic variation in the order parameter follows the ac field when the oscillation period is greater than the response time of the system and the amplitude is greater than the critical value. Results suggest that the DPD technique can provide important insights in to the dynamic behavior of LC system under both dc and ac electric fields. This technique can further be applied to examine the properties of colloidal LCs which can be very useful for many practical applications.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In