0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis and Optimisation of Two-Dimensional Silicon Complex Grating With Different Ridge Heights or Groove Depths for Solar Cells

[+] Author Affiliations
Pingping Li, Qiang Cheng, Hao Wu, Jinlin Song

Huazhong University of Science and Technology, Wuhan, China

Huaichun Zhou

Tsinghua University, Beijing, China

Paper No. MNHMT2013-22093, pp. V001T05A003; 6 pages
doi:10.1115/MNHMT2013-22093
From:
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • Hong Kong, China, December 11–14, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-3615-4
  • Copyright © 2013 by ASME

abstract

In this study, two kinds of two-dimensional (2D) complex gratings are proposed for a potential application as absorbing surfaces for solar cells in the visible and near-infrared wavelength regions, which are based on the superposition of multiple 2D simple gratings with different ridge heights for convex gratings or different groove depths for concave gratings, respectively. Silicon is selected as the complex grating material because it is common in micro/nanofabrication. Compared with one-dimensional (1D) gratings, the new structures present excellent radiative properties to rays from all directions. Besides, the new gratings can achieve satisfactory performance under both TM and TE waves, which cannot be easily obtained by 1D gratings. Furthermore, these two kinds of 2D complex gratings can both achieve higher absorptance in the whole of the interested spectral range by making full use of the microcavity resonance than 2D simple gratings with the same ridge height or groove depth. Taguchi method is employed as an efficient way of searching for the optimal profiles for the 2D complex gratings. The average spectral absorptance of the optimized structure for the 2D complex convex grating with two different ridge heights is above 0.93 within wavelength region from 0.3 to 1.1 μm for both TM and TE waves under normal incidence, which suggests that the proposed structures can be well suitable for solar absorber applications. The Finite-different time-domain (FDTD) method is used for all numerical calculations to obtain spectral absorptance of different structures.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In