Full Content is available to subscribers

Subscribe/Learn More  >

Microchannel Condensation: Comparison of Annular Laminar Flow Theory With Detailed Measurements

[+] Author Affiliations
H. S. Wang, J. W. Rose

University of London, London, UK

Paper No. MNHMT2013-22156, pp. V001T04A007; 5 pages
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • Hong Kong, China, December 11–14, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5615-4
  • Copyright © 2013 by ASME


Detailed experimental investigations of condensation in microchannels where local heat flux and surface temperature were measured along the channel are compared with theoretical results for the special case of annular, laminar flow. The theoretical model includes surface tension driven transverse flow towards the corners of the channel as well as shear stress driven streamwise flow in an otherwise Nusselt treatment. The theory has no empirical input. When distributions along the channel of the local vapor and wall temperatures are given, local heat flux and heat-transfer coefficient, as well as local vapor quality, may be calculated. Such detailed experimental data have only recently become available. Strict implementation of the theory requires that the onset of condensation occurs within the channel, i.e. the vapor is saturated or superheated at the inlet. The comparisons show remarkably good agreement with the experimental data for two fluids and covering a wide range of experimental conditions.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In