0

Full Content is available to subscribers

Subscribe/Learn More  >

Nanobubbles on a Very Flat Hydrophobic Surface Prepared by Self-Assembled Monolayers

[+] Author Affiliations
Takashi Nishiyama, Koji Takahashi, Yasuyuki Takata

Kyushu University, Fukuoka, Japan

Paper No. MNHMT2013-22077, pp. V001T04A003; 4 pages
doi:10.1115/MNHMT2013-22077
From:
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • Hong Kong, China, December 11–14, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-3615-4
  • Copyright © 2013 by ASME

abstract

Boiling is one of the most effective heat transfer methods due to its high heat transfer coefficient. Therefore, boiling heat transfer plays a very important role for various applications in many technological and industrial areas. However, a very complex mechanism of boiling, especially bubble nucleation, is still not sufficiently understood. On the other hand, numerous experiments have revealed the existence of soft domains that called nanobubbles at the solid-liquid interface. In this study, to investigate the influence of the solid-liquid interface nanobubbles on the bubble nucleation, an atomic force microscope (AFM) is used to characterize the morphology of nanobubbles. In order to separate the effect of wettability of a solid surface from that of surface structure, a very flat hydrophobic surface was prepared. 1H,1H,2H,2H-Perfluoro-n-octylphosphonic acid (FOPA) formed the interface of hydrophobic self-assembled monolayers (SAMs). As the result of AFM measurement, many nanobubbles about 100 nm in diameter and 30 nm thick are observed at the interface of the FOPA surface and the pure water. In addition, to prove the existence of gaseous phase, the heat conductance measurement by time-domain thermoreflectance method (TDTR) was introduced. TDTR is an ultrafast optical pump probe technique well suited for thermal measurement of thin films. It enables to resolve the thermal conductivity of the thin film and the thermal conductance of the interface. If nanobubbles are the gaseous phase, the big change of interface heat thermal resistance will be seen and the TDTR signal should also change. The effectiveness of a TDTR to confirm the existence of nanobubbles is shown by the model simulation of TDTR. A clear difference is seen in TDTR signal by the existence of only 1 nm gaseous phase. After confirming the existence of nanobubbles by AFM measurement, it can be proved that the nanobubbles are truly gaseous phase of the TDTR measurement.

Copyright © 2013 by ASME
Topics: Self-assembly

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In