Full Content is available to subscribers

Subscribe/Learn More  >

Solvent Soaking and Drying of Carbon Nanotube Forests for Enhanced Contact Area and Thermal Interface Conductance

[+] Author Affiliations
John H. Taphouse, Baratunde A. Cola

Georgia Institute of Technology, Atlanta, GA

Paper No. MNHMT2013-22225, pp. V001T03A012; 6 pages
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • Hong Kong, China, December 11–14, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5615-4
  • Copyright © 2013 by ASME


Forests comprised of nominally vertically aligned carbon nanotubes (CNTs), having outstanding thermal and mechanical properties, are excellent candidates for thermal interface materials (TIMs). However, the thermal performance of CNT forest TIMs has been limited by the presence of high thermal contact resistances at the CNT tip interface. The high thermal contact resistance at the CNT tip interface stems from two sources: (1) the relatively weak van der Waals type bonding, which impedes phonon transport, and (2) low contact area. In this work we will show that common solvents, such as water, can be applied to the CNT forest to increase the contact area and reduce the contact resistance by an average of 75%. Specifically, there are two likely mechanisms that can increase the contact area when a CNT forest is wet with a fluid and compressed in an interface. The first is relaxing the van der Waals interactions between contacting CNTs within the forest, consequently decreasing the stiffness of the forest and allowing it to better conform to the opposing surface. The second is the pulling of CNT tips through capillary interactions into contact with the opposing surface as the solvent evaporates. By measuring the thermal resistance of CNT TIMs before and after soaking in variety of solvents the capacity of each mechanism for reducing the contact resistance is explored.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In