Full Content is available to subscribers

Subscribe/Learn More  >

Viscous Dissipation Effect on Entropy Generation of Nanofluid Flow in Microchannels

[+] Author Affiliations
Tiew Wei Ting, Yew Mun Hung, Ningqun Guo

Monash University, Bandar Sunway, Selangor, Malaysia

Paper No. MNHMT2013-22103, pp. V001T02A009; 8 pages
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • Hong Kong, China, December 11–14, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5615-4
  • Copyright © 2013 by ASME


An analytical study of the viscous dissipation effect on entropy generation of forced convection of water-alumina nanofluid in a circular microchannel subjected to exponential wall heat flux is reported. Closed form solutions of the temperature distributions in the streamwise direction for the models with and without viscous dissipation term in the energy equation are obtained. The two models are compared by analyzing their relative deviations in entropy generation for different Reynolds number and nanoparticle volume fraction. The incorporation of viscous dissipation prominently affects the temperature distribution and consequently the entropy generation. The increase in the entropy generation is mainly attributable to the increase in the fluid friction irreversibility. The addition of nanoparticle increases the effective thermal conductivity and viscosity of nanofluid which induces escalation in the heat transfer and fluid friction irreversibilities, respectively. By taking the viscous dissipation effect into account, the exergetic effectiveness for forced convection of nanofluid in microchannels attenuate with increasing nanoparticle volume fraction. From the aspect of the second law of thermodynamics, the widespread conjecture that nanofluids possess advantage over pure fluid associated with higher overall effectiveness is invalidated.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In