0

Full Content is available to subscribers

Subscribe/Learn More  >

On the Influence of Nanoparticle Shapes for Nanofluids Flow Behaviors by Molecular Dynamics Simulation

[+] Author Affiliations
Wenzheng Cui

Dalian University of Technology, Dalian, ChinaHarbin Institute of Technology, Weihai, China

Minli Bai, Jizu Lv, Peng Weng, Chengzhi Hu, Xiaojie Li

Dalian University of Technology, Dalian, China

Paper No. MNHMT2013-22024, pp. V001T02A004; 7 pages
doi:10.1115/MNHMT2013-22024
From:
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • Hong Kong, China, December 11–14, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-3615-4
  • Copyright © 2013 by ASME

abstract

Understanding how the nanoparticles influence flow behavior of nanofluids is important for revealing mechanism of heat transfer enhancement by using nanofluids. The aim of this work was to study the microscopic change in base fluid and micro-motion of nanoparticles due to Brownian motion by molecular dynamics simulation. The present work established shearing flow simulation models considering different shapes of nanoparticles. Velocity distribution and number density distribution of fluid, and angular velocity components and translational velocity components of nanoparticles were statistically analyzed. The results of velocity distribution and number density distribution showed that adding nanoparticles reduces flow boundary layer and causes uneven distribution of mass; and the results for angular velocity components and translational velocity components of nanoparticles showed that nanoparticles rotate fast in the fluid, and vibrate irregularly. The present study suggests that adding nanoparticles causes microscopic change for base fluid including reducing thickness of flow boundary layer and uneven density distribution in fluid. In addition, the micro-motions of nanoparticles including rotation and vibration due to Brownian motion strengthen micro-flow effect and momentum transfer in nanofluids. Furthermore, by comparing motion behaviors of nanoparticles in different shapes the present work reveals that shapes of nanoparticles influence deeply flow behavior of nanofluids.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In