0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Ion Current Signal in Diesel Combustion

[+] Author Affiliations
Fadi Estefanous

Wayne State University, Detroit, MI

Paper No. ICEF2013-19090, pp. V002T06A010; 15 pages
doi:10.1115/ICEF2013-19090
From:
  • ASME 2013 Internal Combustion Engine Division Fall Technical Conference
  • Volume 2: Fuels; Numerical Simulation; Engine Design, Lubrication, and Applications
  • Dearborn, Michigan, USA, October 13–16, 2013
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5610-9
  • Copyright © 2013 by ASME

abstract

Ionization in internal combustion engines produces a signal indicative of in-cylinder conditions that can be used for the feedback electronic control of the engine, to meet production goals in performance, fuel economy and emissions. Most of the research has been conducted on carbureted and port injection spark ignition engines where the ionization mechanisms are well defined. A limited number of investigations have been conducted on ionization in diesel engines because of its complex combustion process.

In this study, a detailed ionization mechanism is developed and introduced in a 3-D diesel cycle simulation computational fluid dynamics (CFD) code to determine the contribution of different species in the ionization process at different engine operating conditions. The CFD code is coupled with DARS-CFD, another module used to allow chemical kinetics calculations. The three-dimensional model accounts for the heterogeneity of the charge and the resulting variations in the combustion products. Furthermore, the model shows the effects of varying fuel injection pressure and engine load on the ion current signal characteristics. Ion current traces obtained experimentally from a heavy duty diesel engine were compared to the 3-D model results. The results of the simulation indicate that some heavy hydrocarbons, soot precursors play a major role, in addition to the role of NOx in ionization in diesel combustion.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In