0

Full Content is available to subscribers

Subscribe/Learn More  >

Automatic Combustion Phase Calibration With Extremum Seeking Approach

[+] Author Affiliations
Enrico Corti, Giorgio Mancini, Claudio Forte, Davide Moro

University of Bologna, Bologna, Italy

Paper No. ICEF2013-19132, pp. V001T05A009; 10 pages
doi:10.1115/ICEF2013-19132
From:
  • ASME 2013 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Advanced Combustion; Emissions Control Systems; Instrumentation, Controls, and Hybrids
  • Dearborn, Michigan, USA, October 13–16, 2013
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5609-3
  • Copyright © 2013 by ASME

abstract

Combustion control is assuming a crucial role in reducing engine tailpipe emissions and maximizing performance. The number of actuations influencing the combustion is increasing, and, as a consequence, the calibration of control parameters is becoming challenging. One of the most effective factors influencing performance and efficiency is the combustion phasing: for gasoline engines control variables such as Spark Advance (SA), Air-to-Fuel Ratio (AFR), Variable Valve Timing (VVT), Exhaust Gas Recirculation (EGR) are mostly used to set the combustion phasing.

The optimal control setting can be chosen according to a target function (cost or merit function), taking into account performance indicators, such as Indicated Mean Effective Pressure (IMEP), Brake Specific Fuel Consumption (BSFC), pollutant emissions, or other indexes inherent to reliability issues, such as exhaust gas temperature, or knock intensity.

Many different approaches can be used to reach the best calibration settings: Design Of Experiment (DOE) is a common option when many parameters influence the results, but other methodologies are in use: some of them are based on the knowledge of the controlled system behavior, by means of models that are identified during the calibration process.

The paper proposes the use of a different concept, based on the extremum seeking approach. The main idea consists in changing the values of each control parameter at the same time, identifying its effect on the monitored target function, allowing to shift automatically the control setting towards the optimum solution throughout the calibration procedure. An original technique for the recognition of control parameters variations effect on the target function is introduced, based on spectral analysis.

The methodology has been applied to data referring to different engines and operating conditions, using IMEP, exhaust temperature and knock intensity for the definition of the target function, and using SA and AFR as control variables. The approach proved to be efficient in reaching the optimum control setting, showing that the optimal setting can be achieved rapidly and consistently.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In