0

Full Content is available to subscribers

Subscribe/Learn More  >

A New Physics-Based Misfire Detection Technique for a SI Engine

[+] Author Affiliations
M. Boudaghi Kh. N., S. A. Jazayeri

K. N. Toosi University of Technology, Tehran, Iran

M. Shahbakhti

Michigan Technological University, Houghton, MI

Paper No. ICEF2013-19096, pp. V001T05A005; 12 pages
doi:10.1115/ICEF2013-19096
From:
  • ASME 2013 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Advanced Combustion; Emissions Control Systems; Instrumentation, Controls, and Hybrids
  • Dearborn, Michigan, USA, October 13–16, 2013
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5609-3
  • Copyright © 2013 by ASME

abstract

Control and detection of misfire is an essential part of on-board diagnosis of modern SI engines. This study proposes a novel model-based technique for misfire detection of a multi-cylinder SI engine. The new technique uses a dynamic engine model to determine mean output power, which is then used to calculate a new parameter for misfire detection. The new parameter directly relates to combustion period and is sensitive to the engine speed fluctuations caused by misfire. The new technique only requires measured engine speed data and it is computationally viable for use in a typical ECU.

The new technique is evaluated experimentally on a 4-cylinder 1.6-liter SI engine. Three types of misfires are studied including single, continues, and multiple events. The steady-state and transient experiments were done for a wide range of engine speeds and engine loads, using a vehicle chassis dynamometer and on-road vehicle testing. The validation results show the new technique is capable to detect all the three types of misfire with up to 97 percent accuracy during steady-state conditions. The new technique is augmented with a compensation factor to improve the accuracy of the technique for transient operations. The resulting technique is shown to be capable of detecting misfire during both transient and steady-state engine conditions.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In