0

Full Content is available to subscribers

Subscribe/Learn More  >

A Research on Engine Phase and Speed Estimation Method Based on Cylinder Pressure Sensor

[+] Author Affiliations
Jinli Wang, Fuyuan Yang, Minggao Ouyang, Ying Huang

Tsinghua University, Beijing, China

Paper No. ICEF2013-19025, pp. V001T05A001; 7 pages
doi:10.1115/ICEF2013-19025
From:
  • ASME 2013 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Advanced Combustion; Emissions Control Systems; Instrumentation, Controls, and Hybrids
  • Dearborn, Michigan, USA, October 13–16, 2013
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5609-3
  • Copyright © 2013 by ASME

abstract

Cylinder pressure based combustion state control is a direction that has drawn much attention in the field of internal combustion engine control, especially in the field of diesel HCCI (Homogeneous Charge Compression Ignition) research. In-cylinder pressure sensors have the potential to diagnose or even replace many traditional sensors, including camshaft and crankshaft sensors. This paper did research on engine synchronization method based on in-cylinder pressure signal. The research was based on a 4-cylinder high pressure common rail diesel engine equipped with 4 PSG (Pressure Sensor Glow Plug) type piezo-resistance cylinder pressure sensors, intended for HCCI research. Through theoretical analysis and experimental proof, methods and models for cylinder identification, engine phase estimation and engine speed estimation are given and further verified by experiments. Results show that cylinder pressure sensor could be used to identify cylinder instead of cam shaft sensor. The models for engine phase and speed estimation have been proved to have precision of 3° crank angle and 4.6rpm, respectively. The precision of engine phase and speed estimation provides a possibility for the engine to run if the crankshaft sensor fails, but more researches have to be carried out with respect to crankshaft sensor replacement.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In