0

Full Content is available to subscribers

Subscribe/Learn More  >

Study of Cylinder Charge Control for Enabling Low Temperature Combustion in Diesel Engines

[+] Author Affiliations
Prasad Divekar, Usman Asad, Xiaoye Han, Xiang Chen, Ming Zheng

University of Windsor, Windsor, ON, Canada

Paper No. ICEF2013-19226, pp. V001T03A029; 10 pages
doi:10.1115/ICEF2013-19226
From:
  • ASME 2013 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Advanced Combustion; Emissions Control Systems; Instrumentation, Controls, and Hybrids
  • Dearborn, Michigan, USA, October 13–16, 2013
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5609-3
  • Copyright © 2013 by ASME

abstract

Suitable cylinder charge preparation is deemed critical for the attainment of a highly homogeneous, diluted, and lean cylinder charge which is shown to lower the flame temperature. The resultant low temperature combustion (LTC) can simultaneously reduce the NOx and soot emissions from diesel engines. This requires sophisticated coordination of multiple control systems for controlling the intake boost, exhaust gas recirculation (EGR), and fueling events. Additionally, the cylinder charge modulation becomes more complicated in the novel combustion concepts that apply port injection of low reactivity alcohol fuels to replace the diesel fuel partially or entirely. In this work, experiments have been conducted on a single cylinder research engine with diesel and ethanol fuels. The test platform is capable of independently controlling the intake boost, EGR rates, and fuelling events. Effects of these control variables are evaluated with diesel direct injection and a combination of diesel direct injection and ethanol port injection. Data analyses are performed to establish the control requirements for stable operation at different engine load levels with the use of one or two fuels. The sensitivity of the combustion modes is thereby analyzed with regard to the boost, EGR, fuel types and fueling strategies. Zero-dimensional cycle simulations have been conducted in parallel with the experiments to evaluate the operating requirements and operation zones of the LTC combustion modes. Correlations are generated between air-fuel ratio (λ), EGR rate, boost level, in-cylinder oxygen concentration and load level using the experimental data and simulation results. Development of a real-time boost-EGR set-point determination to sustain the LTC mode at the varying engine load levels and fueling strategies is proposed.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In