Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Combustion Phasing Control Strategy During Reactivity Controlled Compression Ignition (RCCI) Multi-Cylinder Engine Load Transitions

[+] Author Affiliations
Yifeng Wu, Reed Hanson, Rolf D. Reitz

University of Wisconsin-Madison, Madison, WI

Paper No. ICEF2013-19195, pp. V001T03A025; 11 pages
  • ASME 2013 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Advanced Combustion; Emissions Control Systems; Instrumentation, Controls, and Hybrids
  • Dearborn, Michigan, USA, October 13–16, 2013
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5609-3
  • Copyright © 2013 by ASME


The dual fuel reactivity controlled compression ignition (RCCI) concept has been successfully demonstrated to be a promising, more controllable, high efficiency and cleaner combustion mode. A multi-dimensional computational fluid dynamics (CFD) code coupled with detailed chemistry, KIVA-CHEMKIN, was applied to develop a strategy for phasing control during load transitions. Steady-state operating points at 1500 rev/min were calibrated from 0 to 5 bar brake mean effective pressure (BMEP). The load transitions considered in this study included a load-up and a load-down load change transient between 1 bar and 4 bar BMEP at 1500 rev/min. The experimental results showed that during the load transitions, the diesel injection timing responded in 2 cycles while around 5 cycles were needed for the diesel common-rail pressure to reach the target value. However, the intake manifold pressure lagged behind the pedal change for about 50 cycles due to the slower response of the turbocharger.

The effect of these transients on RCCI engine combustion phasing was studied. The CFD model was first validated against steady-state experimental data at 1 bar and 4 bar BMEP. Then the model was used to develop strategies for phasing control by changing the direct port fuel injection (PFI) amount during load transitions. Specific engine operating cycles during the load transitions (6 cycles for the load-up transition and 7 cycles for the load-down transition) were selected based on the change of intake manifold pressure to represent the transition processes. Each cycle was studied separately to find the correct PFI to diesel fuel ratio for the desired CA50 (the crank angle at which 50 % of total heat release occurs). The simulation results showed that CA50 was delayed by 7 to 15 degrees for the load-up transition and advanced by around 5 degrees during the load-down transition if the pre-calibrated steady-state PFI table was used. By decreasing the PFI ratio by 10 % to 15 % during the load-up transition and increasing the PFI ratio by around 40 % during the load-down transition, the CA50 could be controlled at a reasonable value during transitions. The control strategy can be used for closed-loop control during engine transient operating conditions. Combustion and emission results during load transitions are also discussed.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In