Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of the Combustion Characteristics of a Diesel Micro Pilot Ignited DI Gasoline Engine With Turbocharging and Cooled EGR

[+] Author Affiliations
Yuhua (York) Zhu, Nameer Salman, Kevin Freeman, Ronald Reese, II

Chrysler Group LLC, Auburn Hills, MI

Zihan Wang, Riccardo Scarcelli, Sibendu Som

Argonne National Laboratory, Lemont, IL

Paper No. ICEF2013-19170, pp. V001T03A022; 13 pages
  • ASME 2013 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Advanced Combustion; Emissions Control Systems; Instrumentation, Controls, and Hybrids
  • Dearborn, Michigan, USA, October 13–16, 2013
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5609-3
  • Copyright © 2013 by ASME and Chrysler Group LLC


Advanced technologies combining turbocharging, downsizing, direct injection, and cooled EGR are being intensively investigated in order to significantly improve the fuel economy of spark-ignition (SI) gasoline engines. To avoid the occurrence of knock and to improve the thermal efficiency, a significant fraction of EGR is often used. Due to the significant fraction of EGR, the ignition source needs to be enhanced to ensure high combustion stability. In addition to advanced spark-based solutions, diesel micro-pilot (DMP) technology has been proposed in recent years where the diesel fuel replaces the spark-plug as the ignition source.

This paper studies the combustion characteristics of a diesel micro pilot ignited gasoline engine, employing direct injection of gasoline and diesel as well as turbocharging and cooled EGR. A multi-dimensional CFD code with a chemical kinetic calculation capability was extensively validated across the engine speed and load range in a previous study [1]. This paper explores the influence of a number of parameters on DMP combustion behavior, including: diesel pilot mass fraction, start of injection (SOI), DMP injection strategy, as well as EGR rate, air/fuel ratio, and DI gasoline/air mixture inhomogeneity.

Besides, the comparison of DMP ignited combustion with traditional spark ignited combustion is also made in terms of EGR tolerance, lean burn limit, and DI gasoline air mixture inhomogeneity. Finally, numerical simulations aimed at optimizing both gasoline and diesel injection parameters, as well as EGR rate in order to enhance the engine performance in the DMP combustion mode, are discussed.

Copyright © 2013 by ASME and Chrysler Group LLC



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In