Full Content is available to subscribers

Subscribe/Learn More  >

Performance and Emissions Characteristics of Diesel-Ignited Gasoline Dual Fuel Combustion in a Single Cylinder Research Engine

[+] Author Affiliations
U. Dwivedi, C. D. Carpenter, E. S. Guerry, A. C. Polk, S. R. Krishnan, K. K. Srinivasan

Mississippi State University, Starkville, MS

Paper No. ICEF2013-19108, pp. V001T03A016; 14 pages
  • ASME 2013 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Advanced Combustion; Emissions Control Systems; Instrumentation, Controls, and Hybrids
  • Dearborn, Michigan, USA, October 13–16, 2013
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5609-3
  • Copyright © 2013 by ASME


Diesel-ignited gasoline dual fuel combustion experiments were performed in a single-cylinder research engine (SCRE), outfitted with a common-rail diesel injection system and a stand-alone engine controller. Gasoline was injected in the intake port using a port-fuel injector. The engine was operated at a constant speed of 1500 rev/min, a constant load of 5.2 bar IMEP, and a constant gasoline energy substitution of 80%. Parameters such as diesel injection timing (SOI), diesel injection pressure, and boost pressure were varied to quantify their impact on engine performance and engine-out ISNOx, ISHC, ISCO, and smoke emissions. Advancing SOI from 30 DBTDC to 60 DBTDC reduced ISNOx from 14 g/kWhr to less than 0.1 g/kWhr; further advancement of SOI did not yield significant ISNOx reduction. A fundamental change was observed from heterogeneous combustion at 30 DBTDC to “premixed enough” combustion at 50–80 DBTDC and finally to well-mixed diesel-assisted gasoline HCCI-like combustion at 170 DBTDC. Smoke emissions were less than 0.1 FSN at all SOIs, while ISHC and ISCO were in the range of 8–20 g/kWhr, with the earliest SOIs yielding very high values. Indicated fuel conversion efficiencies were ∼ 40–42.5%. An injection pressure sweep from 200 to 1300 bar at 50 DBTDC SOI and 1.5 bar intake boost showed that very low injection pressures lead to more heterogeneous combustion and higher ISNOx and ISCO emissions, while smoke and ISHC emissions remained unaffected. A boost pressure sweep from 1.1 to 1.8 bar at 50 DBTDC SOI and 500 bar rail pressure showed very rapid combustion for the lowest boost conditions, leading to high pressure rise rates, higher ISNOx emissions, and lower ISCO emissions, while smoke and ISHC emissions remained unaffected by boost pressure variations.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In