0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of a High-Pressure, High-Temperature, Optically Accessible Continuous-Flow Vessel for Fuel-Injection Experiments

[+] Author Affiliations
Kemar C. James, Jin Wang, Zackery B. Morris, Michael C. Maynard, Brian T. Fisher

University of Alabama, Tuscaloosa, AL

Paper No. ICEF2013-19102, pp. V001T03A014; 10 pages
doi:10.1115/ICEF2013-19102
From:
  • ASME 2013 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Advanced Combustion; Emissions Control Systems; Instrumentation, Controls, and Hybrids
  • Dearborn, Michigan, USA, October 13–16, 2013
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5609-3
  • Copyright © 2013 by ASME

abstract

The focus of this work was to develop a continuous-flow vessel with extensive optical access for characterization of engine-relevant fuel-injection and spray processes. The spray chamber was designed for non-reacting experiments at pressures up to 1380 kPa (200 psi) and temperatures up to 200°C. Continuous flow of inert “sweep gas” enables acquisition of large statistical data samples and thus potentially enables characterization of stochastic spray processes. A custom flange was designed to hold a common-rail diesel injector, with significant flexibility to accommodate other injectors and injector types in the future. This flexibility, combined with the continuous flow through the chamber, may enable studies of gas-turbine direct-injection spray processes in the future. Overall, the user can control and vary: injection duration, injection pressure, sweep-gas temperature, sweep-gas pressure, and sweep-gas flow rate. The user also can control frequency of replicate injections.

There are four flat windows installed orthogonally on the vessel for optical access. Optical data, at present, include global spray properties such as liquid-phase fuel penetration and cone angle. These measurements are made using a high-speed spray-visualization system (up to 100 kHz) consisting of a fast-pulsed LED (light emitting diode) source and a high-speed camera. Experimental control and data acquisition have been set up and synchronized using custom LabVIEW programs. The culmination of this development effort was an initial demonstration experiment to capture high-speed spray-visualization movies of n-heptane injections to determine liquid-phase fuel penetration length (i.e., liquid length) and spray cone angle. In this initial experiment, fuel-injection pressure was ∼120 MPa (1200 bar) and the injection command-pulse duration was 800 μs. At room conditions, liquid length and nominal spray cone angle were ∼170 mm and ∼14.5°, respectively. In contrast, with air flow in the chamber at 100 psi and 100°C, liquid length was considerably shorter at ∼92 mm and spray cone angle was wider at ∼16.5°. Future experiments will include the continuation of these measurements for a wider range of conditions and fuels, extension of high-speed imaging to vapor-phase fuel penetration using schlieren imaging techniques, and detailed characterization of spray properties near the injector nozzle and near the liquid length.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In