0

Full Content is available to subscribers

Subscribe/Learn More  >

Simultaneous High-Speed Imaging of Fuel Spray, Combustion Luminosity, and Soot Luminosity in a Spray-Guided Direct Injection Engine With Different Multi-Hole Fuel Injectors

[+] Author Affiliations
Ming Zhang

Shanghai Jiao Tong University, Shanghai, China

Michael C. Drake, Kevin Peterson

General Motors R&D, Warren, MI

Paper No. ICEF2013-19066, pp. V001T03A007; 7 pages
doi:10.1115/ICEF2013-19066
From:
  • ASME 2013 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Advanced Combustion; Emissions Control Systems; Instrumentation, Controls, and Hybrids
  • Dearborn, Michigan, USA, October 13–16, 2013
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5609-3
  • Copyright © 2013 by ASME and General Motors

abstract

Eight different multi-hole fuel injectors with nominally the same exterior geometry (8-hole, 60 degree circular symmetric spray pattern) but different levels of development (Generation I and Generation II), length-to-diameter (L/D) ratios (1.4 to 2.4), and manufacturing processes (EDM vs. laser drilled) are compared in a spray-guided, spark-ignition direct injection (SG-SIDI) single-cylinder optical engine. In-cylinder pressure measurements and exhaust emission measurements quantified effects of different injectors on combustion and emissions. Crank-angle-resolved white-light spray imaging and simultaneous flame and soot visualization quantified variations in spray structure, combustion propagation, and soot formation and oxidation.

At a single operating condition (2000rpm, 95kPa inlet pressure, 90°C engine temperature, end of injection timing (EOI) @ 36 BTDC, spark advance (SA) @ 36 BTDC, 8.1mg/injection), all eight injectors have nearly the same IMEP (about 270kPa) and engine-out gaseous emissions. Experiments show that laser drilled injectors with lower L/D ratios (L/D = 1.4–2.0) have a totally collapsed fuel spray structure, a more penetrating liquid spray with severe fuel impingement on the piston, and rapidly-forming soot deposits on the piston. The collapsed, more compact fuel spray vaporized more slowly and the resulting rich zones led to strong soot luminosity. In contrast, the laser drilled injector with the highest L/D ratio (2.4) and the two EDM injectors (Generation I and Generation II with L/D = 2.0) show 8 distinct spray plumes, less fuel impingement, and much less soot emission intensity. Image analysis tools developed in Matlab were used to characterize the flame propagation and soot formation processes.

Copyright © 2013 by ASME and General Motors

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In