0

Full Content is available to subscribers

Subscribe/Learn More  >

Computational Analysis of a Diesel Engine Autoignition, Combustion, and Emissions Using Injection Rate Shapes

[+] Author Affiliations
Amit Shrestha, Ziliang Zheng, Tamer Badawy, Naeim A. Henein

Wayne State University, Detroit, MI

Paper No. ICEF2013-19060, pp. V001T03A006; 14 pages
doi:10.1115/ICEF2013-19060
From:
  • ASME 2013 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Advanced Combustion; Emissions Control Systems; Instrumentation, Controls, and Hybrids
  • Dearborn, Michigan, USA, October 13–16, 2013
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5609-3
  • Copyright © 2013 by ASME

abstract

Injection rate shaping is a method used to control the instantaneous mass flow rate of the fuel during an injection event. The rate at which the fuel is delivered affects the composition of the combustible mixture and its distribution in the combustion chamber, thereby has an impact on the combustion process in the diesel engine. This paper investigates the effects of five different types of injection rate shapes on diesel engine autoignition, combustion, and engine-out emission trends using a three-dimensional computational simulation approach. For this purpose, an n-heptane fuel model is utilized. Initially, a tophat rate-shape, characterized by the constant mass flow rate of the fuel, is assumed to represent the actual injection profile of an actual engine. Then, in order to develop sufficient confidence in the simulation predictions, this assumption together with the calibrated CFD models are validated by reproducing the cylinder gas pressure, the rate of heat release, and engine-out emissions trends for two sets of engine operating conditions. Later, using all the rate shapes the investigation is conducted for one test point considering two different cases of fuel injection: Case 1 - same SOI and duration of injection (DOI), and Case 2 - same combustion phasing and DOI.

The results obtained from the computational analysis show that the injection rate shape affects the autoignition, combustion, and emissions of a diesel engine. It is observed that the rate shapes, characterized by high injection rates at the beginning of the injection event, enhance the formation of negative temperature coefficient (NTC) regime. Therefore, the mole fractions of different species are determined during the NTC regime in order to examine the processes relevant to the formation of the NTC regimes for these rate shapes. Further, for the same SOI and DOI case, significant differences in the ignition delays between each rate shapes are observed. The maximum deviation of the ignition delay from the reference tophat is found to be 37%. Furthermore, the paper highlights the differences in the cylinder gas pressure, gas temperature, and rate of heat release due to different fuel delivery rates of different rate shapes. Finally, the comparison of the engine-out emissions for different rate shapes for both the cases of injection are presented and discussed in detail.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In