0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Load on Close-Coupled Post-Injection Efficacy for Soot Reduction in an Optical, Heavy-Duty Diesel Research Engine

[+] Author Affiliations
Jacqueline O’Connor, Mark P. B. Musculus

Sandia National Laboratories, Livermore, CA

Paper No. ICEF2013-19037, pp. V001T03A003; 23 pages
doi:10.1115/ICEF2013-19037
From:
  • ASME 2013 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Advanced Combustion; Emissions Control Systems; Instrumentation, Controls, and Hybrids
  • Dearborn, Michigan, USA, October 13–16, 2013
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5609-3
  • Copyright © 2013 by ASME

abstract

The use of close-coupled post injections of fuel is an in-cylinder soot-reduction technique that has much promise for high efficiency, heavy-duty diesel engines. Close-coupled post injections, short injections of fuel that occur soon after the end of the main fuel injection, have been known to reduce engine-out soot at a wide range of engine operating conditions, including variations in injection timing, EGR level, load, boost, and speed. While many studies have investigated the performance of post injections, the details of the mechanism by which soot is reduced remains unclear. In this study, we have measured the efficacy of post injections over a range of load conditions, at constant speed, boost, and rail pressure, in a heavy-duty, optically-accessible research diesel engine. Here, the base load is varied by changing the main-injection duration. Measurements of engine-out soot indicate that not only does the efficacy of a post injection decrease at higher engine loads, but that the range of post-injection durations over which soot reduction is achievable is limited at higher loads. Optical measurements, including natural luminescence of soot and planar laser-induced incandescence of soot, provide information about the spatio-temporal development of in-cylinder soot through the cycle in cases with and without post injections. The optical results indicate that the post injection behaves similarly at different loads, but that its relative efficacy decreases due to the increase in soot resulting from longer main-injection durations.

Copyright © 2013 by ASME
Topics: Engines , Stress , Diesel , Soot

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In