Full Content is available to subscribers

Subscribe/Learn More  >

Co-Simulation Based Design and Experimental Validation of Control Strategies for Digital Fluid Power Systems

[+] Author Affiliations
Maciej Z. Pindera, Yuzhi Sun, Jean-Jacques Malosse

Dynsan, LLC, Madison, AL

Jose M. Garcia

Purdue University, Kokomo, IN

Paper No. FPMC2013-4489, pp. V001T01A053; 11 pages
  • ASME/BATH 2013 Symposium on Fluid Power and Motion Control
  • ASME/BATH 2013 Symposium on Fluid Power and Motion Control
  • Sarasota, Florida, USA, October 6–9, 2013
  • Conference Sponsors: Fluid Power Systems and Technology Division
  • ISBN: 978-0-7918-5608-6
  • Copyright © 2013 by ASME


This work presents and experimentally validates the use of co-simulations in the virtual prototyping of control strategies for a digital hydraulic system. Co-simulations allow analysis of complex systems by partitioning the latter into a collection of well defined, interacting sub-systems and components. This approach is well suited for analysis of digital hydraulics. The system under consideration is composed of four two way, two position, on-off solenoid poppet valves connected to a double rod hydraulic cylinder actuator. The control task is to schedule the opening and closing of the valves to provide precise control of the requested actuator position. The actuator and valve dynamics are modeled as lumped parameter systems given by first order Ordinary Differential Equations (ODEs). The equations are solved simultaneously using a computationally efficient Chebyshev expansion approach. All co-simulations took no more than 10 seconds of computational time to execute on a standard PC with an Intel Core i7 processor. The valve and piston dynamics are fully coupled through exchange of flowrate and pressure data between the appropriate components. Coupling and data exchange were performed using the co-simulation environment CoSIM, which allows connection of arbitrary number of components in arbitrary configurations. The valve actuation strategies were based on selected versions of Bang-Bang control. The most successful was able to keep the actuator displacement with practically no oscillations about the requested set point. Preliminary results show that excellent position control characteristics can be obtained to within 2–3 percent of experimental data.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In