Full Content is available to subscribers

Subscribe/Learn More  >

New Designs in Fuel Dispensing System to Reduce Water Hammer

[+] Author Affiliations
Y. J. Liu, Z. Y. Wang, Z. Y. Huang

South China University of Technology, Guangzhou, Guangdong, China

J. Lumkes, Jr.

Purdue University, Lafayette, IN

Paper No. FPMC2013-4415, pp. V001T01A010; 8 pages
  • ASME/BATH 2013 Symposium on Fluid Power and Motion Control
  • ASME/BATH 2013 Symposium on Fluid Power and Motion Control
  • Sarasota, Florida, USA, October 6–9, 2013
  • Conference Sponsors: Fluid Power Systems and Technology Division
  • ISBN: 978-0-7918-5608-6
  • Copyright © 2013 by ASME


Dispensers are used for refueling vehicles at the service station. During the refueling process, the velocity of fluid changes rapidly in several working conditions, which results in a rapid pressure increasing or a water hammer effect occurring. Water hammer, often causes leakage or failure of dispensers, occurs due to pump start-up and shut-down, valves opening or closing during the refueling process. This paper experimentally characterized and theoretically calculated the impact of water hammer on the dispensers at the service station. New designs of nozzle structure and new flow-rate control modes are made to reduce the water hammer in the fuel dispensing system. Eventually, all the water hammers are reduced significantly during the refueling process under the new design modes.

Copyright © 2013 by ASME
Topics: Fuels , Water hammer



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In