0

Full Content is available to subscribers

Subscribe/Learn More  >

Power Density Performance Improvements for High Pressure Ripple Energy Harvesting

[+] Author Affiliations
Nalin Verma, Kenneth A. Cunefare, Ellen Skow, Alper Erturk

Georgia Institute of Technology, Atlanta, GA

Paper No. SMASIS2013-3179, pp. V002T07A019; 8 pages
doi:10.1115/SMASIS2013-3179
From:
  • ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting
  • Snowbird, Utah, USA, September 16–18, 2013
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5604-8
  • Copyright © 2013 by ASME

abstract

A hydraulic pressure energy harvester (HPEH) device, which utilizes a housing to isolate a piezoelectric stack from the hydraulic fluid via a mechanical interface, generates power by converting the dynamic pressure within the system into electricity. Prior work developed an HPEH device capable of generating 2187 microWatts from an 85 kPa pressure ripple amplitude using a 1387 mm3 stack. A new generation of HPEH produced 157 microWatts at the test conditions of 18 MPa static pressure and 394 kPa root-mean-square pressure amplitude using a 50 mm3 stack, thus increasing the power produced per volume of piezoelectric stack principally due to the higher dynamic pressure input. The stack and housing design implemented on this new prototype device yield a compact, high-pressure hydraulic pressure energy harvester designed to withstand 35 MPa. The device, which is less than a 2.54 cm in length as compared to a 5.3 cm length of a previous HPEH, was statically tested up to 21.9 MPa and dynamically tested up to 19 MPa with 400 kPa root-mean-square dynamic pressure amplitude. An inductor was included in the load circuit in parallel with the stack and the load resistance to increase the power output of the device. A previously developed electromechanical power output model for this device that predicts the power output given the dynamic pressure ripple amplitude is compared to the power results. The power extracted from this device would be sufficient to meet the proposed applications of the device, which is to power sensor nodes in hydraulic systems.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In