Full Content is available to subscribers

Subscribe/Learn More  >

Design of SMA Helical Actuators: An Experimental Study

[+] Author Affiliations
Isabel Czarnocki, Wonhee Kim, Brent Utter, Jonathan Luntz, Diann Brei

University of Michigan, Ann Arbor, MI

Paul Alexander

General Motors R&D, Warren, MI

Paper No. SMASIS2013-3332, pp. V001T04A017; 9 pages
  • ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation
  • Snowbird, Utah, USA, September 16–18, 2013
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5603-1
  • Copyright © 2013 by ASME and General Motors


The Shape Memory Alloy (SMA) helical actuation architecture overcomes the typical strain limitations of straight wire SMA actuators by producing larger stroke in a small package size. SMA Helical actuators also provide design tailorability where the tightness of the coil can be used to make tradeoffs between force and displacement, along with the coupled tradeoff between package length and diameter. These are very attractive for industrial settings such as the automotive industry, but require models and design processes to support the needs of the quick, early design cycles typically required. This paper presents an experimentally-based parameter study from which a streamlined design process is extracted. SMA helical actuators with a range of wire diameters and coil diameters were fabricated and experimentally characterized. The functional dependence of performance metrics such as austenite stiffness, force level of the martensite plateau, and recoverable strain were evaluated. A two-step decoupled design procedure is presented based on the resulting empirical model where the kinematic design is first undertaken to select the spring index which provides the required strain within the available package space, and then the non-dimensionalized force is used to scale the design such that the required actuation force is achieved. The streamlined, systematic design framework presented in this paper provides the means for the design of compact, large stroke helical actuators in industrial settings.

Copyright © 2013 by ASME and General Motors
Topics: Actuators , Design



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In