0

Full Content is available to subscribers

Subscribe/Learn More  >

Analytical Evaluation of Adaptive Seat Energy Absorber for Rotorcraft Semi-Active Crash Safety Seat Development

[+] Author Affiliations
Muthuvel Murugan

US Army Research Laboratory - Vehicle Technology Directorate, Aberdeen Proving Ground, MD

JinHyeong Yoo

US Army Research Laboratory- Vehicle Technology Directorate, Aberdeen Proving Ground, MD

Gregory Hiemenz

Techno-Sciences, Inc., Beltsville, MD

Norman Wereley

University of Maryland, College Park, MD

Paper No. SMASIS2013-3314, pp. V001T04A015; 8 pages
doi:10.1115/SMASIS2013-3314
From:
  • ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation
  • Snowbird, Utah, USA, September 16–18, 2013
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5603-1
  • Copyright © 2013 by ASME

abstract

This research study focuses on the analytical evaluation of magneto-rheological (MR) dampers for enhanced occupant protection during vertical crash landings of a helicopter. The current state-of-the-art helicopter crew seat has passive safety mechanisms that are highly limited in their capability to optimally adapt to each type of crash scenario due to variations in both occupant weight and crash severity level. While passive crash energy absorbers work well for a single design condition (50th percentile male occupant and fixed crash severity level), they do not offer adequate protection across a broad spectrum of crash conditions by minimizing the load transmitted to the occupant. This study reports the development of a lumped-parameter human body model including lower leg in a seated posture for rotorcraft crash injury simulation. A physical model of lumped-parameter human body restrained on a crew seat was implemented in multi-body dynamics simulation software. For implementing control, a control algorithm was made to work with the multi-body dynamic model by running co-simulation. The injury criteria and tolerance levels for the biomechanical effects are discussed for each of the identified vulnerable body regions, such as the thoracic lumbar loads for different sized adults. The desired objective of this analytical model development is to develop a tool to study the performance of adaptive semi-active magnetorheological seat suspensions for rotorcraft occupant protection.

Copyright © 2013 by ASME
Topics: Safety

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In