Full Content is available to subscribers

Subscribe/Learn More  >

Uncertainty Quantification for Robust Control Design of Smart Material Systems

[+] Author Affiliations
Jerry A. McMahan, Ralph C. Smith

North Carolina State University, Raleigh, NC

Paper No. SMASIS2013-3166, pp. V001T03A028; 6 pages
  • ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation
  • Snowbird, Utah, USA, September 16–18, 2013
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5603-1
  • Copyright © 2013 by ASME


The objective in robust control design is to provide mechanisms to achieve tracking or stabilization objectives in the presence of unmodeled dynamics. This is usually achieved by assuming worst case model discrepancies which can significantly degrade control authority if the uncertainty bounds are overly conservative. In this paper, we use uncertainty quantification techniques to construct densities for control outputs that can be used to derive optimal robust control designs. We illustrate the performance of these techniques in the context of systems with smart material actuators and sensors.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In