Full Content is available to subscribers

Subscribe/Learn More  >

A Minimally Invasive Cage for Spinal Fusion Surgery Utilizing Superelastic Hinges

[+] Author Affiliations
Walter Anderson, Christoph Haberland, Mohammad Elahinia

University of Toledo, Toledo, OH

Paper No. SMASIS2013-3144, pp. V001T03A026; 8 pages
  • ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation
  • Snowbird, Utah, USA, September 16–18, 2013
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5603-1
  • Copyright © 2013 by ASME


A prototype cage implant for spinal fusion surgery has been designed and developed. Spinal fusion surgery is sometimes performed to alleviate low back pain. The cage implant is a spacer that sits in between two vertebrae to allow for bone growth and fusion, all while relieving compression of the spinal cord. The cage implant is minimally invasive in nature, utilizing embedded nitinol hinges as dual purpose actuators and assembly structural elements. The cage implant utilizes elliptical shaped nitinol hinge pins as actuators to allow the cage to be in a straightened before deployment and manipulate its shape to an oblong octagon once within the disc space. A new modeling technique was developed to aid with the design of the nitinol ellipses. The model is MATLAB based and accounts for the non Mises behavior of nitinol through a correction factor for mapping the effective stress and strain. A nitinol rod and an elliptical geometry were examined experimentally and show the robustness of the developed model. These experiments were conducted to design the nitinol hinges for the cage implant. The cage implant is made of two different materials, nitinol hinge actuators and the containing titanium structural segments. The nitinol hinge actuators are completely enclosed within the medical grade titanium segments through the use of selective laser sintering.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In