0

Full Content is available to subscribers

Subscribe/Learn More  >

Steady State Crack Growth in Shape Memory Alloys

[+] Author Affiliations
Selcuk Hazar, Gunay Anlas

Boğaziçi University, İstanbul, Turkey

Wael Zaki

Khalifa University of Science, Technology and Research, Abu Dhabi, UAE

Ziad Moumni

ENSTA-ParisTech, Palaiseau, FranceNorthwestern Polytechnical University, Xi’an, China

Paper No. SMASIS2013-3071, pp. V001T03A018; 9 pages
doi:10.1115/SMASIS2013-3071
From:
  • ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation
  • Snowbird, Utah, USA, September 16–18, 2013
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5603-1
  • Copyright © 2013 by ASME

abstract

Shape memory alloys experience phase transformation from austenite to martensite around crack tip. When the crack advances, martensitic transformation occurs at the tip and the energy that goes into transformation results in stable crack growth like in the case of plastic deformation. In literature, there are studies on steady-state crack growth in elasto-plastic materials with small scale yielding around crack tip that use stationary movement methods similar to non-local algorithms. In this work, Mode I steady-state crack growth in an edge cracked Nitinol plate is modeled using a non-local stationary movement method. The Zaki-Moumni (ZM) constitutive model is utilized for this purpose. The model is implemented in ABAQUS by means of a user-defined material subroutine (UMAT) to determine transformation zones around the crack tip. Steady-state crack growth is first simulated without considering reverse transformation to calculate the effect of transformation on stress distribution in the wake region, then reverse transformation is taken into account. Stress distribution and transformation regions calculated for both cases are compared to results obtained for the case of a static crack.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In