0

Full Content is available to subscribers

Subscribe/Learn More  >

Adaptive Control Concept for Shape Memory Alloy Actuators

[+] Author Affiliations
Kenny Pagel, Welf-Guntram Drossel, Wolfgang Zorn, André Bucht, Holger Kunze

Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany

Paper No. SMASIS2013-3042, pp. V001T03A014; 8 pages
doi:10.1115/SMASIS2013-3042
From:
  • ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation
  • Snowbird, Utah, USA, September 16–18, 2013
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5603-1
  • Copyright © 2013 by ASME

abstract

Machine tools for small work pieces are characterized by an extensive disproportion between workspace and cross section. This is mainly caused by limitations in the miniaturization of drives and guidance elements, since their physical working principle necessitates certain minimum sizes. Due to their high specific workloads and relatively small spatial requirements, Thermal Shape-Memory-Alloys (SMA) possesses an outstanding potential to serve as miniaturized positioning devices in small machines. Antagonistically arranged SMA actuators are especially feasible to fulfill these requirements.

This paper describes an adaptive closed loop control concept for actuators based on spring loaded or antagonistic arrangements of electrically-heated SMA elements. Due to their nonlinear stress-strain behavior such actuators are characterized by strain dependent load conditions at the activated SMA element. Consequently the actuator dynamic depends on its position. Hence an adaptive closed loop control concept to ensure a constant actuator dynamic over the entire stroke has to be developed. The approach is based on the determination of the transient transfer dynamics of the SMA Element. Two possible strategies are investigated and evaluated. Numerical models of both SMA wire arrangements are used to develop the adaptive control theoretically. An SMA wire test bench is designed to investigate the proof of the adaptive approach experimentally. Measurements of a conventional PI control are further compared to the achieved results of the new concept.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In