0

Full Content is available to subscribers

Subscribe/Learn More  >

A Memory Variable Approach to Modeling the Magneto-Mechanical Behavior of Magnetic Shape Memory Alloys

[+] Author Affiliations
Doug LaMaster, Heidi Feigenbaum, Isaac Nelson, Constantin Ciocanel

Northern Arizona University, Flagstaff, AZ

Paper No. SMASIS2013-3036, pp. V001T03A009; 11 pages
doi:10.1115/SMASIS2013-3036
From:
  • ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation
  • Snowbird, Utah, USA, September 16–18, 2013
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5603-1
  • Copyright © 2013 by ASME

abstract

Magnetic shape memory alloys (MSMAs) have attracted interest because of their considerable recoverable strain (up to 10%) and fast response time (1 kilohertz or higher). MSMAs are comprised of martensitic variants that have tetragonal unit cells and a magnetization vector that is innately aligned with the short side of the unit cell. These variants rotate either to align the magnetization vector with an applied magnetic field or to align the short side of the unit cell with an applied compressive stress. This reorientation leads to a mechanical strain and an overall change in the material’s magnetization, allowing MSMAs to be used as actuators, sensors, and power harvesters.

This paper builds upon the work of Kiefer and Lagoudas [4,5] as well as improvements proposed by LaMaster et al. [1] to present a thermodynamic based model to predict the response of an MSMA to axial mechanical loading and transverse magnetic loading. This work is unique, however, in its use of a memory variable, which references the last stable configuration. This is similar to the approach used by Saint-Sulpice [2] in modeling SMA wires. The resulting model has zero driving force for reorientation of variants at the beginning of any load and again when the load is removed. Thus the model predicts what is seen physically, that the material is stable when no magneto-mechanical load is present. Furthermore, this model is more physical and less empirical than others in the literature, having only 2 material parameters associated with the stress-strain or stress-field response. In addition, this model includes evolution rules for the magnetic domain volume fractions and the angle of rotation of the magnetization vectors based on thermodynamic requirements.

The resulting model is calibrated and predictions are compared with both the more established Keifer and Lagoudas model as well as experimental data. Results show decent correlation with experiments. The model can be further improved by calibrating the demagnetization factor to experimentally measured changes in magnetic field.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In