0

Full Content is available to subscribers

Subscribe/Learn More  >

Origami-Inspired Folding and Unfolding of Structures: Fundamental Investigations of Dielectric Elastomer-Based Active Materials

[+] Author Affiliations
Saad Ahmed, Kevin McGough, Zoubeida Ounaies, Mary Frecker

The Pennsylvania State University, State College, PA

Paper No. SMASIS2013-3330, pp. V001T01A029; 6 pages
doi:10.1115/SMASIS2013-3330
From:
  • ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation
  • Snowbird, Utah, USA, September 16–18, 2013
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5603-1
  • Copyright © 2013 by ASME

abstract

We are investigating the use of dielectric elastomers (DE) to realize origami-inspired folding and unfolding of structures. DEs are compliant materials where the coupled electro-mechanical actuation takes advantage of the low modulus and high breakdown strength of the elastomer. Until recently, pre-straining of relatively thick DE materials was necessary in order to achieve the high electric fields required to trigger electrostatic actuation. However, the current availability of thinner DE materials (ex: VHB 9469PC-130μm, VHB 9473 PC −260 μm) has enabled their actuation at achievable electric fields without the need to pre-strain. In this work, an exhaustive study on the fundamentals of DE actuation is done by exploring thickness actuation mechanism and studying the change in dielectric permittivity; we also take advantage of the thin DEs to build actuators with very large bending angles. In particular, we relate the electrostatically-induced thickness contraction in a DE monomorph to the resulting bending once an inactive substrate is added. Both statically and dynamically induced electromechanical thickness strains are measured, and the experimental data is used as an input to a bender model to predict and optimize bending response; variables such as type of inactive material, number of DE layers, and type of electrodes are examined. We will also experimentally track the changes in the dielectric constant as a function of strain, electrode type, and applied electric field; the measured behavior will be used to model thickness and bending actuation. These fundamental studies are necessary to determine ability and limitation of DE materials in a bender configuration. Finally, bending of the DE actuator is transformed into folding by a novel geometric approach, where different shaped notches are introduced in the inactive substrate. The folding configuration is a step towards realizing active origami structure.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In