Full Content is available to subscribers

Subscribe/Learn More  >

Electronic Damping in Multifunctional Systems

[+] Author Affiliations
Ya Wang, Daniel J. Inman

University of Michigan, Ann Arbor, MI

Paper No. SMASIS2013-3195, pp. V001T01A018; 7 pages
  • ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation
  • Snowbird, Utah, USA, September 16–18, 2013
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5603-1
  • Copyright © 2013 by ASME


As the recent structures seek lighter weight, damping becomes a more critical issue. Decreasing weight increases flexibility causing vibrations to become more prevalent. Damping treatments to reduce unwanted vibrations are usually classified into three categories: passive, semi active and active depending on the degree to which external energy and complexity is needed to achieve the required reduction in vibration. Here we examine the use of a multifunctional structure’s philosophy to introduce and research the concept of “electronic damping” offering an alternative to traditional damping solutions and a capability of providing uniform energy dissipation across a wide range of ambient frequencies and temperatures. The proposed research addresses increasing the range of effectiveness of damping by addressing the temperature and frequency dependence of material damping by using a multifunctional composite system containing an active element. Our approach is to model the mechanics using Lagrange’s formulation for multi-physics systems and to experimentally validate our models using careful experiments. We propose to examine the strength models and properties of the system and to examine the performance by constructing and testing some prototype systems. The focus is on both the electrical integration and the structural integration of the different material systems required to design a completely stand alone multifunctional composite with superior damping properties useful for suppressing vibrations.

Copyright © 2013 by ASME
Topics: Damping



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In