0

Full Content is available to subscribers

Subscribe/Learn More  >

Additive Manufacturing of Shape Memory Devices and Pseudoelastic Components

[+] Author Affiliations
Christoph Haberland, Mohammad Elahinia, Jason Walker

University of Toledo, Toledo, OH

Horst Meier, Jan Frenzel

Ruhr University Bochum, Bochum, North Rhine Westphalia, Germany

Paper No. SMASIS2013-3070, pp. V001T01A005; 8 pages
doi:10.1115/SMASIS2013-3070
From:
  • ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation
  • Snowbird, Utah, USA, September 16–18, 2013
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5603-1
  • Copyright © 2013 by ASME

abstract

Processing of Nickel-Titanium shape memory alloys (NiTi) is by no means easy because all processing steps can strongly affect the properties of the material. Hence, near-net-shaping technologies are very attractive for processing NiTi due to reduction of the processing route. Additive Manufacturing (AM) provides especially promising alternatives to conventional processing because it offers unparalleled freedom of design. In the last 5 years AM of NiTi received little attention from academics and researchers and, therefore, is far from being established for processing NiTi today. This work is to highlight the current state of the art of using the AM technique Selective Laser Melting (SLM) for processing high quality NiTi parts. For this reason, fundamentals for SLM processing of NiTi are described. It is shown in detail that a careful control of process parameters is of great importance. Furthermore, this work characterizes structural and functional properties like shape recovery, referring to the shape memory effect in Ti-rich SLM NiTi, or pseudoelasticy in Ni-rich SLM NiTi. It is shown that both types of shape memory effects can be adjusted in SLM NiTi by the choice of the raw material and processing strategy. By comparing the properties of SLM NiTi to those of conventionally processed NiTi, this work clearly shows that SLM is an attractive manufacturing method for production of high quality NiTi parts.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In