Full Content is available to subscribers

Subscribe/Learn More  >

Metallic Surfaces Decontamination by Using LASER Light

[+] Author Affiliations
Fabrice Moggia

AREVA, Gif-sur-Yvette, France

Xavier Lecardonnel

AREVA, La Hague, France

Paper No. ICEM2013-96301, pp. V002T03A041; 5 pages
  • ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management
  • Volume 2: Facility Decontamination and Decommissioning; Environmental Remediation; Environmental Management/Public Involvement/Crosscutting Issues/Global Partnering
  • Brussels, Belgium, September 8–12, 2013
  • Conference Sponsors: Nuclear Engineering Division, Environmental Engineering Division
  • ISBN: 978-0-7918-5602-4
  • Copyright © 2013 by ASME


Metal surface cleaning appears to be one of the major priorities for industries especially for nuclear industries. The research and the development of a new technology that is able to meet the actual requirements (i.e. waste volume minimization, liquid effluents and chemicals free process…) seems to be the main commitment. Currently, a wide panel of technologies already exists (e.g. blasting, disk sander, electrodecontamination…) but for some of them, the efficiency is limited (e.g, Dry Ice blasting) and for others, the wastes production (liquid and/or solid) remains an important issue. One answer could be the use of a LASER light process. Since a couple of years, the Clean-Up Business Unit of the AREVA group investigates this decontamination technology. Many tests have been already performed in inactive (i.e. on simulants such as paints, inks, resins, metallic oxides) or active conditions (i.e. pieces covered with a thick metallic oxide layer and metallic pieces covered with grease). The paper will describe the results obtained in term of decontamination efficiency during all our validation process. Metallographic characterizations (i.e. SEM, X-ray scattering) and radiological analysis will be provided. We will also focus our paper on the future deployment of the LASER technology and its commercial use at La Hague reprocessing facility in 2013.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In