Full Content is available to subscribers

Subscribe/Learn More  >

Application of PHADEC Method for the Decontamination of Radioactive Steam Piping Components

[+] Author Affiliations
R. Lo Frano, F. Pilo, D. Aquaro

University of Pisa, Pisa, Italy

Paper No. ICEM2013-96252, pp. V002T03A038; 7 pages
  • ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management
  • Volume 2: Facility Decontamination and Decommissioning; Environmental Remediation; Environmental Management/Public Involvement/Crosscutting Issues/Global Partnering
  • Brussels, Belgium, September 8–12, 2013
  • Conference Sponsors: Nuclear Engineering Division, Environmental Engineering Division
  • ISBN: 978-0-7918-5602-4
  • Copyright © 2013 by ASME


The dismantling of nuclear plants is a complex activity that originates often a large quantity of radioactive contaminated residue.

In this paper the attention was focused on the PHADEC (PHosphoric Acid DEContamination) plant adopted for the clearance of Caorso NPP (in Italy) metallic systems and components contaminated by Co60 (produced by the neutron capture in the iron materials), like the main steam lines, moisture separator of the turbine buildings, etc.

The PHADEC plant consists in a chemical off line treatment: the crud, deposited along the steam piping during life plant as an example, is removed by means of acid attacks in ponds coupled to a high pressure water washing.

Due to the fact that the removed contaminated layers, essentially, iron oxides of various chemical composition, depend on components geometry, type of contamination and time of treatment in the PHADEC plant, it becomes of meaningful importance to suggest a procedure capable to improve the control of the PHADEC process parameters.

This study aimed thus at the prediction and optimization of the mentioned treatment time in order to improve the efficiency of the plant itself and to achieve, in turn, the minimization of produced wastes. To the purpose an experimental campaign was carried out by analysing several samples, i.e. taken along the main steam piping line.

Smear tests as well as metallographic analyses were carried out in order to determine respectively the radioactivity distribution and the crud composition on the inner surface of the components. Moreover the radioactivity in the crud thickness was measured. These values allowed finally to correlate the residence time in the acid attack ponds to the level of the achieved decontamination.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In