Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Radiation Doses During the Dismantling of the Pressurized Tank From Emergency Core Cooling System of RBMK-1500 Reactor

[+] Author Affiliations
A. Simonis, P. Poskas, G. Poskas

Lithuanian Energy Institute, Kaunas, Lithuania

Paper No. ICEM2013-96220, pp. V002T03A033; 7 pages
  • ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management
  • Volume 2: Facility Decontamination and Decommissioning; Environmental Remediation; Environmental Management/Public Involvement/Crosscutting Issues/Global Partnering
  • Brussels, Belgium, September 8–12, 2013
  • Conference Sponsors: Nuclear Engineering Division, Environmental Engineering Division
  • ISBN: 978-0-7918-5602-4
  • Copyright © 2013 by ASME


Preparation for the decommissioning of the Ignalina Nuclear Power Plant involves multiple problems. Personnel radiation safety during the performance of dismantling activities is one of them. In order to assess the optimal personnel radiation safety, the modelling is performed for large components by the means of computer code “VISIPLAN 3D ALARA Planning tool” developed by SCK CEN (Belgium).

Modelling results of radiation doses during the dismantling of the pressurized tank from the emergency core cooling system (ECCS PT) of RBMK-1500 reactor are presented in this paper. The mass of one ECCS PT is approximately 47.6 tons. The radiological surveys indicate that the inner surface of the ECCS PT is contaminated with radioactive products of corrosion and sediments due to the radioactive water.

The assessment of workers exposure was performed to comply with ALARA. The effective doses to the workers were modeled for different strategies of ECCS PT dismantling. The impact of dismantling tools and shielding types and extract ventilation flow rate during the dismantling of ECCS PT on effective doses were analyzed. The total effective personnel doses were obtained by summarizing the effective personnel doses from various sources of exposure, i. e., direct radiation from radioactive equipment, internal radiation due to inhalation of radioactive aerosols, and direct radiation from radioactive aerosols arising during hot cutting in premises.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In