Full Content is available to subscribers

Subscribe/Learn More  >

Calculation of the Nuclear Material Inventory in a Sealed Vault by 3D Radiation Mapping

[+] Author Affiliations
Ian Adsley

Nuvia Limited, Didcot, Oxon., UK

Yevgeniy Tur

National Nuclear Center of the Republic of Kazakhstan, Kurchatov, Kazakhstan

Alexander Klepikov

Nuclear Technology Safety Center, Almaty, Kazakhstan

David Wells

Nuvia Limited, Dorchester, Dorset, UK

Paper No. ICEM2013-96172, pp. V002T03A027; 5 pages
  • ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management
  • Volume 2: Facility Decontamination and Decommissioning; Environmental Remediation; Environmental Management/Public Involvement/Crosscutting Issues/Global Partnering
  • Brussels, Belgium, September 8–12, 2013
  • Conference Sponsors: Nuclear Engineering Division, Environmental Engineering Division
  • ISBN: 978-0-7918-5602-4
  • Copyright © 2013 by ASME


The paper relates to the determination of the amount of nuclear material contained in a closed, concrete lined vault at the Aktau fast breeder reactor in Kazakhstan. This material had been disposed into the vault after examination in an experimental hot cell directly above the vault. In order to comply with IAEA Safeguards requirements it was necessary to determine the total quantities of nuclear materials — enriched uranium and plutonium — that were held with Kazakhstan. Although it was possible to determine the inventory of all of the accessible nuclear material — the quantity remaining in the vault was unknown.

As part of the Global Threat Reduction Programme the UK Government funded a project to determine the inventory of these nuclear materials in this vault. This involved drilling three penetrations through the concrete lined roof of the vault; this enabled the placement of lights and a camera into the vault through two penetrations; while the third penetration enabled a lightweight manipulator arm to be introduced into the vault. This was used to provide a detailed 3D mapping of the dose rate within the vault and it also enabled the collection of samples for radionuclide analysis.

The deconvolution of the 3D dose rate profile within the vault enabled the determination of the gamma emitting source distribution on the floor and walls of the vault. The samples were analysed to determine the fingerprint of those radionuclides producing the gamma dose — namely 137Cs and 60Co — to the nuclear materials. The combination of the dose rate source terms on the surfaces of the vault and the fingerprint then enabled the quantities of nuclear materials to be determined.

The project was a major success and enabled the Kazakhstan Government to comply with IAEA Safeguards requirements. It also enabled the UK DECC Ministry to develop a technology of national (and international) use. Finally the technology was well received by IAEA Safeguards as an acceptable methodology for future studies.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In