Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of the Prediction Correlations for the Flow Through Rotating Orifices in the Gas Turbine Secondary Air Flow System

[+] Author Affiliations
Deoras Prabhudharwadkar, Murali Krishnan R.

GE Global Research, Bangalore, India

Zain Dweik

GE Aviation, Springdale, OH

A. Subramani

GE Aviation, Bangalore, India

Paper No. POWER2013-98128, pp. V001T04A006; 7 pages
  • ASME 2013 Power Conference
  • Volume 1: Fuels and Combustion, Material Handling, Emissions; Steam Generators; Heat Exchangers and Cooling Systems; Turbines, Generators and Auxiliaries; Plant Operations and Maintenance
  • Boston, Massachusetts, USA, July 29–August 1, 2013
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5605-5
  • Copyright © 2013 by ASME


The secondary air flow system of a gas turbine cools and seals those parts of the turbine which would otherwise be exposed to the high temperatures, resulting in their life reduction or even failures. At the same time, excessive secondary air flow hinders the performance of the engine. Accurate analysis of the secondary system is therefore necessary to safeguard the reliable design of the engine and accurate life predictions. The secondary system is analyzed through the flow network analysis which comprises of chambers or cavities connected through flow passages or restrictions. There are significant number of locations where the air passes through stationary or rotating holes, e.g., the pre-swirl nozzles and the turbine blade receiver holes respectively.

The accuracy of the flow prediction depends on the accuracy of the orifice discharge coefficient. This paper provides a detailed assessment of the available discharge coefficient correlations. The discharge coefficient has been found to be dependent on the geometric parameters (viz., length, inlet radius, chamfer), and the amount of cross-flow at the orifice entrance. The cross-flow may result from the relative tangential velocity between the orifice and the air or the inclination of the inlet flow with respect to the orifice axis. In this study, it was found that the discharge coefficient correlations provide similar predictions for flows without any cross-flow. However, significant deviations are seen in the predictions for the cases involving cross-flow. To identify the most accurate correlation for secondary flow application, a thorough assessment was performed using the static and the rotating test data available in the literature. In addition to the comparison using available experimental data, a CFD study was performed to independently assess the correlations. This exercise led to the identification of the most suitable correlation for our application.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In