0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Baffle Overlap Proportion on Shell-Side Performance of Shell and Tube Heat Exchanger With Helical Baffles

[+] Author Affiliations
Bin Gao, Qincheng Bi, Zesen Nie

Xi’an Jiaotong University, Xi’an, Shaanxi, China

Paper No. POWER2013-98287, pp. V001T03A008; 7 pages
doi:10.1115/POWER2013-98287
From:
  • ASME 2013 Power Conference
  • Volume 1: Fuels and Combustion, Material Handling, Emissions; Steam Generators; Heat Exchangers and Cooling Systems; Turbines, Generators and Auxiliaries; Plant Operations and Maintenance
  • Boston, Massachusetts, USA, July 29–August 1, 2013
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5605-5
  • Copyright © 2013 by ASME

abstract

Different overlap configurations of discontinuous helical baffles affect the flow pattern of the shell-side fluid directly, and thus there is a significant impact on the flow and heat transfer characteristics of the shell-side fluid. In the present paper, experiments were carried out to study the impact of baffle overlap proportion on the shell-side flow and heat transfer performance of the shell-and-tube heat exchanger with helical baffles (STHEHB). Two different shell-side friction factors, the friction factor per helical pitch (fs,1B) and the friction factor per tube length (fs,1m), were defined based on different reference lengths. The results showed that, since the baffle overlap proportion leads to different helical pitch as well as flow fields in shell side, opposite conclusions are obtained by choosing different reference length. Based on the same Reynolds number, the shell-side Nusselt number of the STHEHB with 10% baffle overlap is higher than that with 50% baffle overlap. The reason is that the larger baffle overlap proportion produces more serious leak flows and weakens the heat transfer in shell side. The comparison of heat transfer coefficient per unit pressure drop versus shell-side flow rate showed that the STHEHB with smaller baffle overlap proportion has better comprehensive heat transfer performance, but the difference between the two decreases gradually with the increase of the flow rate.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In