Full Content is available to subscribers

Subscribe/Learn More  >

Structural Modification of a Power Plant’s River Water Intake to Minimize Ice Blockage

[+] Author Affiliations
Frank Michell

American Electric Power, Columbus, OH

Marcela Politano, Yushi Wang

IIHR - Hydroscience & Engineering, Iowa City, IA

Jeffrey Stallings

EPRI, Palo Alto, CA

Paper No. POWER2013-98281, pp. V001T03A006; 10 pages
  • ASME 2013 Power Conference
  • Volume 1: Fuels and Combustion, Material Handling, Emissions; Steam Generators; Heat Exchangers and Cooling Systems; Turbines, Generators and Auxiliaries; Plant Operations and Maintenance
  • Boston, Massachusetts, USA, July 29–August 1, 2013
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5605-5
  • Copyright © 2013 by ASME


Ice blockage of a power plant’s water intake is of paramount importance since it can lead to an unplanned shutdown of the intake compromising water supply and plant operation. American Electric Power’s (AEP) Conesville Power Plant historically controlled ice accumulation at the river intake by routing to the intake a portion of the warm water return from the condenser on the only operating “once-through” unit’s circulating water system. The unit operating with this once-through cooling system was retired at the end of 2012; thus, the plant lost the use of the condenser outlet/warm water return deicing flow at the river intake.

A numerical study was conducted to evaluate design alternatives to alleviate ice accumulation at the river intake. A numerical model to predict the ice transport and accumulation at the river intake was developed and used to understand the main phenomenon leading to intake blockage.

The effectiveness of mitigation measures was evaluated with the model. A mitigation plan consisting of intake modifications to be implemented during several phases is presented. In the first phase, large pipe openings are cut in the walls separating intake pump wells of previously retired units at the facility. In the second phase, a number of sediment control vanes previously placed in front of the intake are removed to facilitate downstream ice transport. A third phase, if needed to be implemented, involves removing additional sedimentation control vanes and cutting holes in the pump wells on the operating units.

The paper describes the model, discusses numerical results and presents the field experience after implementation of phase one.

Copyright © 2013 by ASME
Topics: Ice , Water , Rivers



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In