Full Content is available to subscribers

Subscribe/Learn More  >

A New Method for Numerical Prediction of Lean Blowout in Aero-Engine Combustor

[+] Author Affiliations
Zhibo Zhang, Hongtao Zheng, Zhiming Li, Yajun Li, Gang Pan, Xi Chen

Harbin Engineering University, Harbin, Heilongjiang, China

Paper No. POWER2013-98199, pp. V001T01A028; 7 pages
  • ASME 2013 Power Conference
  • Volume 1: Fuels and Combustion, Material Handling, Emissions; Steam Generators; Heat Exchangers and Cooling Systems; Turbines, Generators and Auxiliaries; Plant Operations and Maintenance
  • Boston, Massachusetts, USA, July 29–August 1, 2013
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5605-5
  • Copyright © 2013 by ASME


Lean blowout (LBO) is one of the most important parameters on combustor performance. A new method named Feature-Section-criterion (FSC) for predicting LBO of aero-engine annular combustor has been put forward in the present work. A CFD software FLUENT has been used to simulate the combustion flow field of an annular combustor. The prediction of LBO with FSC has been done in this paper and the effects of flow velocity, air temperature and droplet averaged-diameter on the LBO of aero-engine combustor have been discussed by using of FSC. The results show that the predictions of FSC are in agreement with corresponding experimental data. This showing that this method for predicting lean blowout is reliable and can be used for engineering applications.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In