Full Content is available to subscribers

Subscribe/Learn More  >

A Phenomenological Analysis of Exergy Destruction During Hydrogen Combustion With Electronically Excited Oxygen

[+] Author Affiliations
DeVon A. Washington

Wayne State University, Detroit, MI

Howard N. Shapiro

Iowa State University, Ames, IA

Paper No. POWER2013-98169, pp. V001T01A024; 10 pages
  • ASME 2013 Power Conference
  • Volume 1: Fuels and Combustion, Material Handling, Emissions; Steam Generators; Heat Exchangers and Cooling Systems; Turbines, Generators and Auxiliaries; Plant Operations and Maintenance
  • Boston, Massachusetts, USA, July 29–August 1, 2013
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5605-5
  • Copyright © 2013 by ASME


This study investigates the effects of introducing electronically excited oxygen on trends in exergy destruction during hydrogen combustion. Electronically excited oxygen enhances many properties of combustion. By understanding how it alters the chemical kinetics, and hence the destruction of exergy, it may be possible to improve the overall exergetic efficiency of combustion thereby reducing fuel use to achieve desired energy conversion.

A numerical model was developed of an adiabatic plug flow reactor using CHEMKIN-PRO; in conjunction with a hydrogen oxidation mechanism that includes explicit reaction pathways for various electronically excited species. Exergy destruction was calculated for cases where singlet oxygen composed 0%–100% of the oxidizer while maintaining a stoichiometric oxidizer-fuel ratio; all other inlet conditions were held fixed.

Results show that an optimal range of exergetic combustion efficiency exists between 0%–20%, with the maximum occurring at approximately 10%. A detailed assessment of the total exergy destruction reveals that, for the optimal range of exergetic combustion efficiencies, as much as 60% of the total exergy destruction occurs prior to ignition. For inlet percentages of singlet oxygen greater than 20%, the majority of the total exergy destruction occurs after ignition. This paper examines the phenomenological events taking place in the reaction mechanism that give rise to the destruction of exergy during combustion. Understanding these mechanisms and the effects of introducing excited oxygen into the combustion process, sheds light on how we might use excited oxygen to increase the exergetic efficiency of combustion.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In