0

Full Content is available to subscribers

Subscribe/Learn More  >

Waste / Low Quality Heat Recovery and Utilization With Low Temperature Economizers

[+] Author Affiliations
John M. Preston, W. Reid Watson, Charles B. Jones

CB&I, Charlotte, NC

Paper No. POWER2013-98110, pp. V001T01A015; 7 pages
doi:10.1115/POWER2013-98110
From:
  • ASME 2013 Power Conference
  • Volume 1: Fuels and Combustion, Material Handling, Emissions; Steam Generators; Heat Exchangers and Cooling Systems; Turbines, Generators and Auxiliaries; Plant Operations and Maintenance
  • Boston, Massachusetts, USA, July 29–August 1, 2013
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5605-5
  • Copyright © 2013 by ASME

abstract

Modern combustion steam-electric plants are designed to recover as much heat as economically feasible from the combustion products. As a part of the continuing effort by utilities to increase plant efficiency, extracting low quality heat from the flue gas stream prior to discharge through the stack to the environment has become economically attractive. “Economic feasibility” is strongly dependent on the cost of the fuel as well as quality of the heat recovered. The economic feasibility of deploying low-temperature economizers to cool flue gas from coal-fired steam-electric plants to a temperature well below the sulfuric acid mist dew point is not commonly practiced but could have a number of salutary effects on unit operations including reduction in fuel use, reduction in water, reduction in fly ash resistivity upstream of cold-side electrostatic precipitators and enhanced mercury oxidation/capture.

Using a theoretical 600 MW (nominal) coal fired facility an additional 30.8 MW of electrical output is available with the installation of a Low Temperature Economizer. This represents a 1% improvement in the plant heat rate with an attractive payback period. The components required for this heat recovery sub-system are readily available and the technology has matured to a point where uncertainties are minimized.

In addition to improving the operation of the plant, Low Temperature Economizer can reduce emissions of SOx, NOx, Hg, PM and CO2. In a difficult regulatory environment reducing emissions while increasing plant performance is extremely beneficial. Furthermore Low Temperature Economizer lowers the volume of scrubber water required.

Cooling the flue gas leaving the air heater below the acid mist dew point is not commonly practiced. The corrosion potential of the condensed sulfuric acid is a major materials selection/maintenance challenge as is the potential for gas-side fouling of the heat exchange surface with fly ash.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In