0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of New Instant Technology of Natural Gas Quality Determination

[+] Author Affiliations
Taras Koturbash, Vladimir Kutcherov

KTH Royal Institute of Technology, Stockholm, Sweden

Maksym Karpash, Iryna Darvai, Ihor Rybitskyi

Ivano-Frankivsk National Technical University of Oil and Gas (IFNTUOG), Ivano-Frankivsk, Ukraine

Paper No. POWER2013-98089, pp. V001T01A011; 6 pages
doi:10.1115/POWER2013-98089
From:
  • ASME 2013 Power Conference
  • Volume 1: Fuels and Combustion, Material Handling, Emissions; Steam Generators; Heat Exchangers and Cooling Systems; Turbines, Generators and Auxiliaries; Plant Operations and Maintenance
  • Boston, Massachusetts, USA, July 29–August 1, 2013
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5605-5
  • Copyright © 2013 by ASME

abstract

World experience shows that important factor in the calculations for natural gas consumption between suppliers and consumers is not only the volume of natural gas, but the quality indicators. With gas market liberalization, gas properties are expected to vary more frequently and strongly (composition, heating value etc.). Quality of natural gas is currently a topical issue, considering the steady increase of gas consumption in the world in recent decades. Existent chromatographs and calorimeters are very accurate in gas quality determination, but general expenditure and maintenance costs are still considerable. Market demands alternative lower cost methods of natural gas quality determination for transparent energy billing and technological process control.

Investigation results indicate that heating value (HV) is a nonlinear function of such parameters as sound velocity in gas, N2 and CO2 concentration. Those parameters show strong correlation with natural gas properties of interest (HV, density, Wobbe index), during analysis conducted on natural gas sample database. For solving nonlinear multivariable approximation task of HV determination, artificial neural networks were used. Proposed approach allowed excluding N2 concentration from input parameters with maintenance of sufficient accuracy of HV determination equal to 3.7% (with consideration of N2 concentration – 2.4%) on sample database. For validating of received results corresponding experimental investigation was conducted with reference analysis of physical and chemical parameters of natural gas samples by gas chromatography and followed superior HV calculation according to ISO 6976:1995. Developed experimental setup consist of measuring chamber with ultrasonic transducer, reflector, pressure, temperature and humidity sensors, ultrasonic inspection equipment for sound velocity measurements and CO2 concentration sensor with relevant instrument. The experimental setup allows measurement of sound velocity at 1MHz frequency and CO2 concentration in natural gas sample along with parameters control (temperature, humidity, pressure). The HV calculation algorithm was based on specially designed and trained artificial neural networks.

Experimental investigation of proposed approach was conducted on 40 real samples of locally distributed natural gas. Obtained results, in comparison to reference values, showed absolute error in Lower HV (net calorific value) determination equal 166 kJ/m3, while relative error was equal 4.66%. Developed technology allows construction of autonomous instrument for instant natural gas quality determination, which can be combined with volume meters in order to provide transparent energy flow measurement and billing for gas consumers. Additionally it can be used for gas sensitive technological process control.

Copyright © 2013 by ASME
Topics: Natural gas

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In