Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of Rotating Nonlinear Energy Sink for Shock Mitigation

[+] Author Affiliations
Mohammad A. Al-Shudeifat

Khalifa University of Science, Technology & Research, Abu Dhabi, UAE

Lawrence A. Bergman, Alexander F. Vakakis

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. DETC2013-13177, pp. V008T13A087; 6 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 8: 22nd Reliability, Stress Analysis, and Failure Prevention Conference; 25th Conference on Mechanical Vibration and Noise
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5599-7
  • Copyright © 2013 by ASME


Passive nonlinear targeted energy transfer (TET) is addressed here by investigating a lightweight rotating nonlinear energy sink (NES). The rotating sink mass has an essentially nonlinear inertial coupling with the two degree-of-freedom linear system (the primary test structure). The proposed rotating NES is numerically investigated where it is found to passively absorb and rapidly dissipate a considerable portion of the initial energy induced by impulse to the linear structure. The parameters of the rotating NES are optimized for the best performance in the vicinity of intermediate and high loads. The fundamental mechanism for significant energy transfer to the NES is its rotational mode; the oscillatory mode of the NES dissipates far less energy. The frequency-energy dependences are investigated through the frequency-energy plot (FEP). Early and strong resonance capture at the lowest modal frequency is observed between the rotator and the structure, at which a significant portion of the induced energy is transferred and dissipated by the rotator. The performance of this device is found to be comparable to existing, stiffness-based NES designs. However, this device is less complicated and more compact.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In