Full Content is available to subscribers

Subscribe/Learn More  >

On Vibration Control Using a Bistable Snap Through Absorber From a Force Balance Perspective

[+] Author Affiliations
David R. Johnson, R. L. Harne, K. W. Wang

University of Michigan, Ann Arbor, MI

Paper No. DETC2013-12627, pp. V008T13A080; 9 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 8: 22nd Reliability, Stress Analysis, and Failure Prevention Conference; 25th Conference on Mechanical Vibration and Noise
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5599-7
  • Copyright © 2013 by ASME


One approach to vibration control is to apply a force to a primary structure which opposes excitation, effectively canceling the external disturbance. A familiar passive example of this approach is the linear tuned mass absorber. In this spirit, the utility of a bistable attachment for attenuating vibrations, especially in terms of the high-orbit, snap through dynamic, is investigated using the harmonic balance method and experiments. Analyses demonstrate the fundamental harmonic snap through dynamic, having commensurate frequency with the single-frequency harmonic excitation, may yield displacements either substantially in-phase or out-of-phase with the primary structure. During in-phase snap through, forces are generated by the bistable oscillator which reinforce the applied loading, resulting in dramatic amplification of primary system response. During out-of-phase snap through, forces are generated which are only partially opposed to the input, leading to a measure of host structure attenuation. The experiments verify the analytical findings and also uncover nonlinear dynamics not predicted by the analysis that have slightly favorable vibration suppression performance when compared with the out-of-phase, fundamental harmonic snap through action.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In