0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Response of an Unbalanced Rotor Supported on Bearing With Outer Race Waviness

[+] Author Affiliations
P. K. Kankar

PDPM-Indian Institute of Information Technology, Design and Manufacturing Jabalpur, Jabalpur, MP, India

Satish C. Sharma, S. P. Harsha

Indian Institute of Technology Roorkee, Roorkee, UT, India

Paper No. DETC2013-12738, pp. V008T13A046; 6 pages
doi:10.1115/DETC2013-12738
From:
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 8: 22nd Reliability, Stress Analysis, and Failure Prevention Conference; 25th Conference on Mechanical Vibration and Noise
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5599-7
  • Copyright © 2013 by ASME

abstract

The paper investigates the non-linear dynamic response of an unbalanced rotor supported on ball bearings with outer race waviness. The excitation is due to unbalanced force and waviness on outer race. The sources of non-linearities are both the radial clearance as well as the Hertzian contact between races and rolling elements. The nonlinear responses due to unbalanced rotor supported on bearings are investigated. The combined effects like non-linear stiffness and non-linear damping for unbalanced rotor with bearing waviness have been considered and analyzed in detail for a rotor bearing system. In the mathematical formulation, the contacts between the rolling elements and the races are considered as an oscillating spring-mass-damper system. The appearance of regions of periodic, sub-harmonic and chaotic behavior is seen to be strongly dependent on the number of waves in the outer race. The results show the appearance of instability and chaos in the dynamic response as the number of waves in the outer race is changed. The study indicates that the interaction of ball passage frequency (ωbp) due to outer race waviness and rotational frequency (X) due to the unbalanced rotor force. Poincaré maps and frequency responses are used to elucidate and to illustrate the diversity of the system behavior.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In