Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Integration Scheme Using Singular Perturbation Method

[+] Author Affiliations
Gibin Gil, Ricardo G. Sanfelice, Parviz E. Nikravesh

University of Arizona, Tucson, AZ

Paper No. DETC2013-13330, pp. V07AT10A039; 11 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7A: 9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5596-6
  • Copyright © 2013 by ASME


Some multi degree-of-freedom dynamical systems exhibit a response that contain fast and slow variables. An example of such systems is a multibody system with rigid and deformable bodies. Standard numerical integration of the resultant equations of motion must adjust the time step according to the frequency of the fastest variable. As a result, the computation time is sacrificed. The singular perturbation method is an analysis technique to deal with the interaction of slow and fast variables. In this study, a numerical integration scheme using the singular perturbation method is discussed, its absolute stability condition is derived, and its order of accuracy is investigated.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In