Full Content is available to subscribers

Subscribe/Learn More  >

A Framework for Adaptive Multibody Modeling of Biopolymers

[+] Author Affiliations
Imad M. Khan, Mohammad Poursina, Jeremy Laflin, Kurt Anderson

Rensselaer Polytechnic Institute, Troy, NY

Paper No. DETC2013-13085, pp. V07AT10A033; 7 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7A: 9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5596-6
  • Copyright © 2013 by ASME


Due to the challenges involved with modeling complex molecular systems, it is essential that computationally intelligent schemes be produced that put the computational effort where and when it is needed to capture important phenomena, and maintain needed accuracy at minimum costs. In this work, we investigate and propose some key issues for the adaptive modeling and simulation of the dynamic behavior of highly complex multiscale processes. This is accomplished through the appropriate use of an adaptive hybridization of existing, newly developed, and proposed advanced multibody dynamics algorithms and modeling strategies for forward dynamic simulation. The adaptive multiscale simulation technique discussed here benefits from the highly parallelizable structure of the divide and conquer (DCA) framework for modeling multibody systems. These algorithms include Flexible Divide and Conquer Algorithm (FDCA), Orthogonal Complement Divide-and-Conquer Algorithm (ODCA) and generalized momentum approaches for modeling discontinuous changes in the system. These algorithms permits a large complex molecule (or systems of molecules) to be seamlessly treated using a hierarchy of reduced order models ranging from atomistic to the continuum scale.

Copyright © 2013 by ASME
Topics: Modeling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In