Full Content is available to subscribers

Subscribe/Learn More  >

Evaluating the Performance of Constraint Formulations for Multibody Dynamics Simulation

[+] Author Affiliations
Daniel Montrallo Flickinger, Jedediyah Williams, Jeffrey C. Trinkle

Rensselaer Polytechnic Institute, Troy, NY

Paper No. DETC2013-12265, pp. V07AT10A024; 6 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7A: 9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5596-6
  • Copyright © 2013 by ASME


Contemporary software systems used in the dynamic simulation of rigid bodies suffer from problems in accuracy, performance, and robustness. Significant allowances for parameter tuning, coupled with the careful implementation of a broad phase collision detection scheme is required to make dynamic simulation useful for practical applications. A geometrically accurate constraint formulation, the Polyhedral Exact Geometry method, is presented. The Polyhedral Exact Geometry formulation is similar to the well-known Stewart-Trinkle formulation, but extended to produce unilateral constraints that are geometrically correct in cases where polyhedral bodies have a locally non-convex free space. The PEG method is less dependent on broad-phase collision detection or system tuning than similar methods, demonstrated by several examples.

Uncomplicated benchmark examples are presented to analyze and compare the new Polyhedral Exact Geometry formulation with the well-known Stewart-Trinkle and Anitescu-Potra methods. The behavior and performance for the methods are discussed. This includes specific cases where contemporary methods fail to match theorized and observed system states in simulation, and how they are ameliorated by PEG.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In